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is a basis of ker (T S). Note B⊆ ker (T S) because T S(wi) = T (ui) = 0 for each i and T S(v j) = T (0) = 0

for each j.

Spanning. If v is in ker (T S), then S(v) is in ker (T ), say S(v) = ∑riui = ∑riS (wi) = S (∑riwi). It follows
that v−∑riwi is in ker (S) = span{v1, v2, . . . , vn}, proving that v is in span (B).

Independence. Let ∑riwi +∑ t jv j = 0. Applying S, and noting that S(v j) = 0 for each j, yields
0 = ∑riS(wi) = ∑riui. Hence ri = 0 for each i, and so ∑ t jv j = 0. This implies that each t j = 0, and so
proves the independence of B.

Proof of Theorem 7.4.1. By Lemma 7.4.1, it suffices to prove that dimC(D
∗
n) = n. This holds for n = 1

because the proof of Theorem 3.5.1 goes through to show that D∗1 =Cea0x. Hence we proceed by induction
on n. With an eye on equation (7.3), consider the polynomial

p(t) = tn−an−1tn−1−an−2tn−2−·· ·−a2t2−a1t−a0

(called the characteristic polynomial of equation (7.3)). Now define a map D : D∞→ D∞ by D( f ) = f ′

for all f in D∞. Then D is a linear operator, whence p(D) : D∞→ D∞ is also a linear operator. Moreover,
since Dk( f ) = f (k) for each k ≥ 0, equation (7.3) takes the form p(D)( f ) = 0. In other words,

D∗n = ker [p(D)]

By the fundamental theorem of algebra,5 let w be a complex root of p(t), so that p(t)= q(t)(t−w) for some
complex polynomial q(t) of degree n−1. It follows that p(D) = q(D)(D−w1D∞

). Moreover D−w1D∞
is

onto by Lemma 7.4.2, dimC[ker (D−w1D∞)] = 1 by the case n = 1 above, and dimC(ker [q(D)]) = n−1
by induction. Hence Lemma 7.4.3 shows that ker [P(D)] is also finite dimensional and

dimC(ker [p(D)]) = dimC(ker [q(D)])+ dimC(ker [D−w1D∞]) = (n−1)+1 = n.

Since D∗n = ker [p(D)], this completes the induction, and so proves Theorem 7.4.1.

7.5 More on Linear Recurrences6

In Section 3.4 we used diagonalization to study linear recurrences, and gave several examples. We now
apply the theory of vector spaces and linear transformations to study the problem in more generality.

Consider the linear recurrence

xn+2 = 6xn− xn+1 for n≥ 0

If the initial values x0 and x1 are prescribed, this gives a sequence of numbers. For example, if x0 = 1 and
x1 = 1 the sequence continues

x2 = 5, x3 = 1, x4 = 29, x5 =−23, x6 = 197, . . .

5This is the reason for allowing our solutions to (7.3) to be complex valued.
6This section requires only Sections 7.1-7.3.
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as the reader can verify. Clearly, the entire sequence is uniquely determined by the recurrence and the two
initial values. In this section we define a vector space structure on the set of all sequences, and study the
subspace of those sequences that satisfy a particular recurrence.

Sequences will be considered entities in their own right, so it is useful to have a special notation for
them. Let

[xn) denote the sequence x0, x1, x2, . . . , xn, . . .

Example 7.5.1

[n) is the sequence 0, 1, 2, 3, . . .

[n+1) is the sequence 1, 2, 3, 4, . . .

[2n) is the sequence 1, 2, 22, 23, . . .

[(−1)n) is the sequence 1, −1, 1, −1, . . .

[5) is the sequence 5, 5, 5, 5, . . .

Sequences of the form [c) for a fixed number c will be referred to as constant sequences, and those of the
form [λ n), λ some number, are power sequences.

Two sequences are regarded as equal when they are identical:

[xn) = [yn) means xn = yn for all n = 0, 1, 2, . . .

Addition and scalar multiplication of sequences are defined by

[xn)+ [yn) = [xn + yn)

r[xn) = [rxn)

These operations are analogous to the addition and scalar multiplication in Rn, and it is easy to check that
the vector-space axioms are satisfied. The zero vector is the constant sequence [0), and the negative of a
sequence [xn) is given by −[xn) = [−xn).

Now suppose k real numbers r0, r1, . . . , rk−1 are given, and consider the linear recurrence relation

determined by these numbers.

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 (7.5)

When r0 6= 0, we say this recurrence has length k.7 For example, the relation xn+2 = 2xn + xn+1 is of
length 2.

A sequence [xn) is said to satisfy the relation (7.5) if (7.5) holds for all n≥ 0. Let V denote the set of
all sequences that satisfy the relation. In symbols,

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 hold for all n≥ 0}
It is easy to see that the constant sequence [0) lies in V and that V is closed under addition and scalar
multiplication of sequences. Hence V is vector space (being a subspace of the space of all sequences).
The following important observation about V is needed (it was used implicitly earlier): If the first k terms
of two sequences agree, then the sequences are identical. More formally,

7We shall usually assume that r0 6= 0; otherwise, we are essentially dealing with a recurrence of shorter length than k.
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Lemma 7.5.1

Let [xn) and [yn) denote two sequences in V . Then

[xn) = [yn) if and only if x0 = y0, x1 = y1, . . . , xk−1 = yk−1

Proof. If [xn) = [yn) then xn = yn for all n = 0, 1, 2, . . . . Conversely, if xi = yi for all i = 0, 1, . . . , k−1,
use the recurrence (7.5) for n = 0.

xk = r0x0 + r1x1 + · · ·+ rk−1xk−1 = r0y0 + r1y1 + · · ·+ rk−1yk−1 = yk

Next the recurrence for n = 1 establishes xk+1 = yk+1. The process continues to show that xn+k = yn+k

holds for all n≥ 0 by induction on n. Hence [xn) = [yn).

This shows that a sequence in V is completely determined by its first k terms. In particular, given a
k-tuple v = (v0, v1, . . . , vk−1) in Rk, define

T (v) to be the sequence in V whose first k terms are v0, v1, . . . , vk−1

The rest of the sequence T (v) is determined by the recurrence, so T : Rk→ V is a function. In fact, it is
an isomorphism.

Theorem 7.5.1

Given real numbers r0, r1, . . . , rk−1, let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1, for all n≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation (7.5) determined
by r0, r1, . . . , rk−1. Then the function

T : Rk→V

defined above is an isomorphism. In particular:

1. dim V = k.

2. If {v1, . . . , vk} is any basis of Rk, then {T (v1), . . . , T (vk)} is a basis of V .

Proof. (1) and (2) will follow from Theorem 7.3.1 and Theorem 7.3.2 as soon as we show that T is an
isomorphism. Given v and w in Rk, write v = (v0, v1, . . . , vk−1) and w = (w0, w1, . . . , wk−1). The first
k terms of T (v) and T (w) are v0, v1, . . . , vk−1 and w0, w1, . . . , wk−1, respectively, so the first k terms of
T (v)+T (w) are v0 +w0, v1 +w1, . . . , vk−1 +wk−1. Because these terms agree with the first k terms of
T (v+w), Lemma 7.5.1 implies that T (v+w) = T (v)+T (w). The proof that T (rv)+rT (v) is similar, so
T is linear.

Now let [xn) be any sequence in V , and let v = (x0, x1, . . . , xk−1). Then the first k terms of [xn) and
T (v) agree, so T (v) = [xn). Hence T is onto. Finally, if T (v) = [0) is the zero sequence, then the first k

terms of T (v) are all zero (all terms of T (v) are zero!) so v = 0. This means that ker T = {0}, so T is
one-to-one.
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Example 7.5.2

Show that the sequences [1), [n), and [(−1)n) are a basis of the space V of all solutions of the
recurrence

xn+3 =−xn + xn+1 + xn+2

Then find the solution satisfying x0 = 1, x1 = 2, x2 = 5.

Solution. The verifications that these sequences satisfy the recurrence (and hence lie in V ) are left
to the reader. They are a basis because [1) = T (1, 1, 1), [n) = T (0, 1, 2), and
[(−1)n) = T (1, −1, 1); and {(1, 1, 1), (0, 1, 2), (1, −1, 1)} is a basis of R3. Hence the
sequence [xn) in V satisfying x0 = 1, x1 = 2, x2 = 5 is a linear combination of this basis:

[xn) = t1[1)+ t2[n)+ t3[(−1)n)

The nth term is xn = t1 +nt2 +(−1)nt3, so taking n = 0, 1, 2 gives

1= x0 = t1 + 0 + t3
2= x1 = t1 + t2 − t3
5= x2 = t1 + 2t2 + t3

This has the solution t1 = t3 =
1
2 , t2 = 2, so xn =

1
2 +2n+ 1

2(−1)n.

This technique clearly works for any linear recurrence of length k: Simply take your favourite basis
{v1, . . . , vk} of Rk—perhaps the standard basis—and compute T (v1), . . . , T (vk). This is a basis of V all
right, but the nth term of T (vi) is not usually given as an explicit function of n. (The basis in Example 7.5.2
was carefully chosen so that the nth terms of the three sequences were 1, n, and (−1)n, respectively, each
a simple function of n.)

However, it turns out that an explicit basis of V can be given in the general situation. Given the
recurrence (7.5) again:

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

the idea is to look for numbers λ such that the power sequence [λ n) satisfies (7.5). This happens if and
only if

λ n+k = r0λ n + r1λ n+1 + · · ·+ rk−1λ n+k−1

holds for all n≥ 0. This is true just when the case n = 0 holds; that is,

λ k = r0 + r1λ + · · ·+ rk−1λ k−1

The polynomial
p(x) = xk− rk−1xk−1−·· ·− r1x− r0

is called the polynomial associated with the linear recurrence (7.5). Thus every root λ of p(x) provides a
sequence [λ n) satisfying (7.5). If there are k distinct roots, the power sequences provide a basis. Inciden-
tally, if λ = 0, the sequence [λ n) is 1, 0, 0, . . . ; that is, we accept the convention that 00 = 1.
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Theorem 7.5.2

Let r0, r1, . . . , rk−1 be real numbers; let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation determined by
r0, r1, . . . , rk−1; and let

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

denote the polynomial associated with the recurrence relation. Then

1. [λ n) lies in V if and only if λ is a root of p(x).

2. If λ1, λ2, . . . , λk are distinct real roots of p(x), then {[λ n
1 ), [λ

n
2 ), . . . , [λ

n
k )} is a basis of V .

Proof. It remains to prove (2). But [λ n
i ) = T (vi) where vi = (1, λi, λ 2

i , . . . , λ k−1
i ), so (2) follows by

Theorem 7.5.1, provided that (v1, v2, . . . , vn) is a basis of Rk. This is true provided that the matrix with
the vi as its rows 



1 λ1 λ 2
1 · · · λ k−1

1
1 λ2 λ 2

2 · · · λ k−1
2

...
...

...
. . .

...
1 λk λ 2

k · · · λ k−1
k




is invertible. But this is a Vandermonde matrix and so is invertible if the λi are distinct (Theorem 3.2.7).
This proves (2).

Example 7.5.3

Find the solution of xn+2 = 2xn + xn+1 that satisfies x0 = a, x1 = b.

Solution. The associated polynomial is p(x) = x2− x−2 = (x−2)(x+1). The roots are λ1 = 2
and λ2 =−1, so the sequences [2n) and [(−1)n) are a basis for the space of solutions by
Theorem 7.5.2. Hence every solution [xn) is a linear combination

[xn) = t1[2
n)+ t2[(−1)n)

This means that xn = t12n + t2(−1)n holds for n = 0, 1, 2, . . . , so (taking n = 0, 1) x0 = a and
x1 = b give

t1 + t2 = a

2t1− t2 = b

These are easily solved: t1 =
1
3(a+b) and t2 =

1
3(2a−b), so

tn =
1
3 [(a+b)2n+(2a−b)(−1)n]
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The Shift Operator

If p(x) is the polynomial associated with a linear recurrence relation of length k, and if p(x) has k distinct
roots λ1, λ2, . . . , λk, then p(x) factors completely:

p(x) = (x−λ1)(x−λ2) · · ·(x−λk)

Each root λi provides a sequence [λ n
i ) satisfying the recurrence, and they are a basis of V by Theorem 7.5.2.

In this case, each λi has multiplicity 1 as a root of p(x). In general, a root λ has multiplicity m if
p(x) = (x− λ )mq(x), where q(λ ) 6= 0. In this case, there are fewer than k distinct roots and so fewer
than k sequences [λ n) satisfying the recurrence. However, we can still obtain a basis because, if λ has
multiplicity m (and λ 6= 0), it provides m linearly independent sequences that satisfy the recurrence. To
prove this, it is convenient to give another way to describe the space V of all sequences satisfying a given
linear recurrence relation.

Let S denote the vector space of all sequences and define a function

S : S→ S by S[xn) = [xn+1) = [x1, x2, x3, . . .)

S is clearly a linear transformation and is called the shift operator on S. Note that powers of S shift the
sequence further: S2[xn) = S[xn+1) = [xn+2). In general,

Sk[xn) = [xn+k) = [xk, xk+1, . . .) for all k = 0, 1, 2, . . .

But then a linear recurrence relation

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n = 0, 1, . . .

can be written
Sk[xn) = r0[xn)+ r1S[xn)+ · · ·+ rk−1Sk−1[xn) (7.6)

Now let p(x)= xk−rk−1xk−1−·· ·−r1x−r0 denote the polynomial associated with the recurrence relation.
The set L[S, S] of all linear transformations from S to itself is a vector space (verify8) that is closed under
composition. In particular,

p(S) = Sk− rk−1Sk−1−·· ·− r1S− r0

is a linear transformation called the evaluation of p at S. The point is that condition (7.6) can be written
as

p(S){[xn)}= 0

In other words, the space V of all sequences satisfying the recurrence relation is just ker [p(S)]. This is the
first assertion in the following theorem.

Theorem 7.5.3

Let r0, r1, . . . , rk−1 be real numbers, and let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

8See Exercises 9.1.19 and 9.1.20.
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denote the space of all sequences satisfying the linear recurrence relation determined by
r0, r1, . . . , rk−1. Let

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

denote the corresponding polynomial. Then:

1. V = ker [p(S)], where S is the shift operator.

2. If p(x) = (x−λ )mq(x), where λ 6= 0 and m > 1, then the sequences

{[λ n), [nλ n), [n2λ n), . . . , [nm−1λ n)}

all lie in V and are linearly independent.

Proof (Sketch). It remains to prove (2). If
(

n
k

)
= n(n−1)···(n−k+1)

k! denotes the binomial coefficient, the idea
is to use (1) to show that the sequence sk =

[(
n
k

)
λ n
)

is a solution for each k = 0, 1, . . . , m− 1. Then
(2) of Theorem 7.5.1 can be applied to show that {s0, s1, . . . , sm−1} is linearly independent. Finally, the
sequences tk = [nkλ n), k = 0, 1, . . . , m−1, in the present theorem can be given by tk = ∑m−1

j=0 ak js j, where

A =
[
ai j

]
is an invertible matrix. Then (2) follows. We omit the details.

This theorem combines with Theorem 7.5.2 to give a basis for V when p(x) has k real roots (not neces-
sarily distinct) none of which is zero. This last requirement means r0 6= 0, a condition that is unimportant
in practice (see Remark 1 below).

Theorem 7.5.4

Let r0, r1, . . . , rk−1 be real numbers with r0 6= 0; let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

denote the space of all sequences satisfying the linear recurrence relation of length k determined by
r0, . . . , rk−1; and assume that the polynomial

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

factors completely as
p(x) = (x−λ1)

m1(x−λ2)
m2 · · ·(x−λp)

mp

where λ1, λ2, . . . , λp are distinct real numbers and each mi ≥ 1. Then λi 6= 0 for each i, and

[
λ n

1

)
,
[
nλ n

1

)
, . . . ,

[
nm1−1λ n

1

)
[
λ n

2

)
,
[
nλ n

2

)
, . . . ,

[
nm2−1λ n

2

)

...
[
λ n

p

)
,
[
nλ n

p

)
, . . . ,

[
nmp−1λ n

p

)

is a basis of V .
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Proof. There are m1 +m2 + · · ·+mp = k sequences in all so, because dim V = k, it suffices to show that
they are linearly independent. The assumption that r0 6= 0, implies that 0 is not a root of p(x). Hence each
λi 6= 0, so {[λ n

i ), [nλ n
i ), . . . , [nmi−1λ n

i )} is linearly independent by Theorem 7.5.3. The proof that the
whole set of sequences is linearly independent is omitted.

Example 7.5.4

Find a basis for the space V of all sequences [xn) satisfying

xn+3 =−9xn−3xn+1 +5xn+2

Solution. The associated polynomial is

p(x) = x3−5x2 +3x+9 = (x−3)2(x+1)

Hence 3 is a double root, so [3n) and [n3n) both lie in V by Theorem 7.5.3 (the reader should verify
this). Similarly, λ =−1 is a root of multiplicity 1, so [(−1)n) lies in V . Hence
{[3n), [n3n), [(−1)n)} is a basis by Theorem 7.5.4.

Remark 1

If r0 = 0 [so p(x) has 0 as a root], the recurrence reduces to one of shorter length. For example, consider

xn+4 = 0xn +0xn+1 +3xn+2 +2xn+3 (7.7)

If we set yn = xn+2, this recurrence becomes yn+2 = 3yn + 2yn+1, which has solutions [3n) and [(−1)n).
These give the following solution to (7.5):

[
0, 0, 1, 3, 32, . . .

)
[
0, 0, 1, −1, (−1)2, . . .

)

In addition, it is easy to verify that

[1, 0, 0, 0, 0, . . .)

[0, 1, 0, 0, 0, . . .)

are also solutions to (7.7). The space of all solutions of (7.5) has dimension 4 (Theorem 7.5.1), so these
sequences are a basis. This technique works whenever r0 = 0.

Remark 2

Theorem 7.5.4 completely describes the space V of sequences that satisfy a linear recurrence relation for
which the associated polynomial p(x) has all real roots. However, in many cases of interest, p(x) has
complex roots that are not real. If p(µ) = 0, µ complex, then p(µ) = 0 too (µ the conjugate), and the
main observation is that [µn +µn) and [i(µn+µn)) are real solutions. Analogs of the preceding theorems
can then be proved.
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Exercises for 7.5

Exercise 7.5.1 Find a basis for the space V of sequences
[xn) satisfying the following recurrences, and use it to
find the sequence satisfying x0 = 1, x1 = 2, x2 = 1.

a. xn+3 =−2xn + xn+1 +2xn+2

b. xn+3 =−6xn +7xn+1

c. xn+3 =−36xn +7xn+2

Exercise 7.5.2 In each case, find a basis for the space V

of all sequences [xn) satisfying the recurrence, and use it
to find xn if x0 = 1, x1 =−1, and x2 = 1.

a. xn+3 = xn + xn+1− xn+2

b. xn+3 =−2xn +3xn+1

c. xn+3 =−4xn +3xn+2

d. xn+3 = xn−3xn+1 +3xn+2

e. xn+3 = 8xn−12xn+1 +6xn+2

Exercise 7.5.3 Find a basis for the space V of sequences
[xn) satisfying each of the following recurrences.

a. xn+2 =−a2xn +2axn+1, a 6= 0

b. xn+2 =−abxn +(a+b)xn+1, (a 6= b)

Exercise 7.5.4 In each case, find a basis of V .

a. V = {[xn) | xn+4 = 2xn+2− xn+3, for n≥ 0}

b. V = {[xn) | xn+4 =−xn+2 +2xn+3, for n≥ 0}

Exercise 7.5.5 Suppose that [xn) satisfies a linear recur-
rence relation of length k. If {e0 = (1, 0, . . . , 0),
e1 = (0, 1, . . . , 0), . . . , ek−1 = (0, 0, . . . , 1)} is the stan-
dard basis of Rk, show that

xn = x0T (e0)+ x1T (e1)+ · · ·+ xk−1T (ek−1)

holds for all n≥ k. (Here T is as in Theorem 7.5.1.)

Exercise 7.5.6 Show that the shift operator S is onto but
not one-to-one. Find ker S.

Exercise 7.5.7 Find a basis for the space V of all se-
quences [xn) satisfying xn+2 =−xn.




